
JIM MANICO Secure Coding Instructor www.manicode.com

OAuth 2.0 Security
Introduction

COPYRIGHT ©2017 MANICODE SECURITY

A little background dirt…
jim@manico.net

@manicode

§ 19+ years of software
development experience

§ Former OWASP Global
Board Member

§ Project manager of the
OWASP Cheat Sheet Series and
several other OWASP projects

§ Author of "Iron-Clad Java,
Building Secure Web Applications”
from McGraw-Hill/Oracle-Press

§ Kauai, Hawaii Resident

2

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0: Where are we going?

3

OAuth Terms

Client Registration

OAuth Grant Types

OAuth Threat Model

OAuth Countermeasures and Controls

COPYRIGHT ©2017 MANICODE SECURITY

So, what is OAuth 2.0?

4

COPYRIGHT ©2017 MANICODE SECURITY 5

OAuth is like a valet key.

It provides another domain
delegated access to your
application server
resources.

COPYRIGHT ©2017 MANICODE SECURITY

What should OAuth NOT be used for?

OAuth should be used for delegation!

6

• OAuth should not be used for traditional access control.

• OAuth should not be used for authentication.

• OAuth should not be used for federation.

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

7

http://tools.ietf.org/html/rfc6749

User
Agent

Client Server

Client Identifier & Redirection URI

Resource
Owner

Authorization
Server

A

User AuthenticatesB

Authorization CodeC

A C

B

Authorization Code & Redirection URID

Access Token (with Optional Refresh Token)E

COPYRIGHT ©2017 MANICODE SECURITY 8

COPYRIGHT ©2017 MANICODE SECURITY 9

COPYRIGHT ©2017 MANICODE SECURITY 10

COPYRIGHT ©2017 MANICODE SECURITY 11

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

12

http://tools.ietf.org/html/rfc6749

User
Agent

Client

Client Identifier & Redirection URI

Resource
Owner

Authorization
Server

A

User AuthenticatesB

Authorization CodeC

A C

B

Authorization Code & Redirection URID

Access Token (with Optional Refresh Token)E

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Terminology

13

COPYRIGHT ©2017 MANICODE SECURITY

Client Application Definition
Client Application
Application requesting access to protected resource on behalf of
resource owner. The application that the resource owner is providing
access to.

Client Application Types
- Mobile applications
- Web browsers
- Desktop applications
- Web server

14

COPYRIGHT ©2017 MANICODE SECURITY

Confidential vs Public Client Applications
Confidential Clients
An application that must register with authorization servers. Authorization
servers give unique client secrets to confidential clients when they
successfully register.

Public Clients
An application that anyone can download and use. Mobile apps and
native applications are example of public clients.

15

COPYRIGHT ©2017 MANICODE SECURITY

High Level Concepts
Protected Resource
Valuable data or features protected by the service provider

OAuth 2.0 Actors
Resource owner/user, client application, resource server,
authorization server, user-agent

Token Types
- Refresh token
- Access token
- Authorization code token

OAuth 2.0 Grant
Types authorization code, implicit, resource-owner password credentials, client
credentials, extension.

Extension Grants
An important extension used in OIDC is the ID token. This is very useful as no
access is delegated but identity is established.

16

COPYRIGHT ©2017 MANICODE SECURITY

Token Types
Access Token
OAuth token used to directly access protected resources on behalf of a
user or service.

Refresh Token
Refresh tokens, when given to the authorization server, will provide a
new active access token. Refresh tokens themselves cannot access
resources. While access tokens should be short lived, refresh tokens are
long lived or simply never expire until the user revokes them. Refresh
tokens also provide more scalable patterns.

Authorization Code Token
Authorization code tokens that are specific and exclusive to the
authorization code grant type used to retrieve access and/or refresh
tokens.

17

COPYRIGHT ©2017 MANICODE SECURITY

Additional OAuth 2.0 Terms
Resource Owner or End-User
User and account owner of resource (the end-user)

Resource Server/Service Provider
Server hosting protected resources owned by the end-user. Accepts
access tokens for protected resources.

Authorization Server/Service Provider
Server issuing access tokens to provide other clients access to protected
resources. Often same server as resource server. One authorization
server may issue access tokens to many resource servers.

18

COPYRIGHT ©2017 MANICODE SECURITY

Other OAuth Term
Client Identifier
Unique ID used in part to authenticate a client application to an
authorization server.

Bearer Token
"A security token with the property that any party in possession of the
token (a "bearer") can use the token in any way that any other party in
possession of it can. Using a bearer token does not require a bearer to
prove possession of cryptographic key material (proof-of-possession).”

— https://tools.ietf.org/html/rfc6750#section-1.2

19

COPYRIGHT ©2017 MANICODE SECURITY 20

Danny (resource owner) has an account with
Twitter (service provider). Danny is also a regular
customer of the website Ono Ono Lau Lau Hawaiian
Cooking (confidential client application). Danny can grant
Ono Ono Lau Lau access to Danny's protected ability to
tweet at Twitter (resource server), without sharing
Danny's user name and password with Ono Ono Lau
Lau's website (client application).

Instead, Danny authenticates directly with Twitter (authorization server),
which issues the Ono Ono Lau Lau website an access token and
a refresh token that will let the Ono Ono Lau Lau website
tweet (access protected resources) on behalf of the user every
time they upload a new recipe.

COPYRIGHT ©2017 MANICODE SECURITY

Introduction to OAuth 2.0

21

COPYRIGHT ©2017 MANICODE SECURITY

Sample OAuth Workflow

Using OAuth, your eCommerce server can now tweet on
behalf of the user even when the user is not logged on.
How does this happen?

22

Next, the
eCommerce

server redirects
the user to Twitter.

The user logs onto
Twitter and authorizes
the eCommerce server
to tweet on her behalf.

First, the user logs into
the eCommerce server

with his account and
edits his account profile.

H
Then, whenever orders are complete
the eCommerce tweets a little note

about how awesome the eCommerce
company is - even when the user is not

logged onto the eCommerce server.

COPYRIGHT ©2017 MANICODE SECURITY

OAuth v1

23

Founded in
Cryptography

…especially digital signatures.
A signed message is tied to its origin.

OAuth 1.0 Messages
are Individually Signed

If a single message within the communication is
constructed or signed improperly, the entire transaction
will be invalidated

Limited Device Support
Beyond the Web Mobile? Native? Sad Panda?

Platform Interoperability and
Implementation Challenges Crypto is hard.

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0

24

OAuth 2
Transport Security Security is delegated to HTTPS/TLS.

Centered around
bearer tokens

These are easy for integration but not great for security. ID
Tokens, where only user info is required and no delegated
access is provided, are also key in OAuth 2.0.

Much easier
to work with

OAuth 2.0 is much more usable, but much more difficult
to build securely.

Much more flexible OAuth 2.0 considers non-web clients as well.

Better separation of duties Resource requests and user authorization
can be decoupled in OAuth 2.0.

COPYRIGHT ©2017 MANICODE SECURITY

OAuth v1 and v2: Which should you use?

25

Google moved away from OAuth 1.0 in April 2012.

Twitter still supports OAuth 1.0.

It’s rare for new server implementations to support OAuth 1.0.

Plenty of OAuth 2.0 “add-on” RFC’s to support crypto if needed.

So 2.0 in almost all situations in 2017+.

COPYRIGHT ©2017 MANICODE SECURITY

OAuth and Interoperability...

Because OAuth 2.0 is more of a framework than
a protocol like OAuth 1.0, OAuth 2.0 implementations
are less likely to be naturally interoperable with any
other OAuth 2.0 implementations.

Unfortunately, the OAuth 2.0 specification leaves a
few required components partially or fully undefined
(for example, client registration, authorization server
capabilities, and endpoint discovery).

26

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Grant Types

27

Authorization Code Grants can hide long-lived tokens from the user. This is
the only way a client would never get to see user credentials.

Implicit Grants can only activate a short-lived token in the browser
when the user is currently logged on.

Resource-Owner Password Credentials Grants can grant and
expose long-lived tokens directly to the user via a trusted client. This means the
client captures the users credentials and presents these to the Identity Provider
to authenticate. It's best for the client to only store the refresh and access
tokens and NOT store the credentials.

Client Credentials Grants can grant and expose a long-lived token
directly to a client application that needs to access data not associated
with a specific user. Should only be used when the user cannot be redirect to
IDP login pages, or login pages cannot be embedded in client. Typical example
is a agent in ADFS or a Radius Frontend.

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Tokens

28

COPYRIGHT ©2017 MANICODE SECURITY

Access Tokens
Access tokens, simply put, are OAuth tokens used to access
protected resources.

§ Access Token Fields
– token_type (required). The type of the token issued (mac token,

bearer token, etc).
– expires_in (recommended).The lifetime in seconds of the access

token.
– scope (required). The level of access permitted when retrieving

user resources. It is critical to build OAuth solutions that limit the
scope via principle of least privilege. Also ensure that the scope
is messages properly to user so the message and actual
delegated access are in sync.

§ Access tokens when used as a bearer token
– Bearer tokens are defined by RFC6750
– https://tools.ietf.org/html/rfc6750

29

COPYRIGHT ©2017 MANICODE SECURITY

Access Token General Countermeasures

§Review treat analysis from https://tools.ietf.org/html/rfc6819
§ Ensure access tokens are all short-lived

(low session time or even one use per token).
§Consider supporting token revocation at the authorization

server per RFC 7009 (OAuth 2.0 Token Revocation).
§ Ensure scope of access tokens are as limited as possible.
§ Protect access tokens on authorization servers in a one-

way fashion like other credentials used for authentication.
§ Protect access tokens in client applications in a temporary,

secure storage mechanism.

30

COPYRIGHT ©2017 MANICODE SECURITY

Access Token General Countermeasures

§ Ensure the authorization server provides only necessary
grants.

§ Ensure hardening of the authorization server from token theft.
§ Ensure basic web server and web application security best

practices.
§ Use well-configured transport layer security (TLS) in all

aspects of OAuth 2.0 communication.
§ Ensure high-entropy access tokens that cannot be guessed

or brute-forced.
§ Consider strong authentication between the client application

and authorization server.

31

COPYRIGHT ©2017 MANICODE SECURITY

Refresh Tokens
§ An active refresh token can request a new and active access token

from the authorization server repeatedly.
§ Another distinction between a refresh token and an access token is who

consumes them.
– The refresh token is used only by the authorization server, and the access token is

used only by a resource server.

§ Refresh tokens can be long-lived: they will persist until a user
invalidates them.

§ Other than Social deployment an application is not likely to need a
refresh token. This is a fundamental question in order to understand the
use cases of the application. Do not allow a refresh token if the client
does not need it!

32

COPYRIGHT ©2017 MANICODE SECURITY

Refresh Token General Countermeasures
§ Consider not supporting refresh tokens. They are long-lived active

sessions and are inherently dangerous.
§ Ensure refresh tokens can be easily listed and revoked by the resource

owner (user).
§ Consider supporting token revocation at the authorization server per

RFC 7009 (OAuth 2.0 Token Revocation).
§ Ensure the scope of refresh tokens is as limited as possible (refresh

tokens should only be able to request specific and scope-limited
access tokens).

§ Protect refresh tokens on authorization servers in a one-way fashion
like other credentials used for authentication.

§ Protect refresh tokens in client applications using secure long-term
storage mechanisms.

33

COPYRIGHT ©2017 MANICODE SECURITY

Refresh Token General Countermeasures
§ Ensure hardening of the authorization server and client server

from token theft.
§ Ensure web application security best practices for all servers.
§ Use well-configured TLS in all aspects of OAuth 2.0 communication.
§ Ensure high-entropy refresh tokens that cannot be guessed

or brute-forced.
§ Bind refresh tokens to client ID and client secret.
§ Consider strong authentication between the client application

and authorization server.
§ Consider using proof-based tokens instead of bearer tokens

for refresh tokens.

34

COPYRIGHT ©2017 MANICODE SECURITY

Client Registration

35

COPYRIGHT ©2017 MANICODE SECURITY

Client Registration Overview
§ Client registration occurs when the client application successfully

registers with a service provider.
(authorization server and resource server).

§ OAuth 2.0 authorization servers can require client applications
to successfully register before other OAuth communication
(like resource server requests) can occur.

36

COPYRIGHT ©2017 MANICODE SECURITY

Client Types
There are two major categories of client applications defined by OAuth
2.0 – Confidential Clients and Public Clients

Confidential Clients
A confidential client can be a web server, web service, Cron job,
or some legacy system.
– Web Applications or Web Services

Public Clients
A public OAuth client is a client that does not require registration.
– Mobile or Native Applications
– Trusted or Third-Party Public

37

COPYRIGHT ©2017 MANICODE SECURITY

What Clients Provide Authorization Server
At Registration Time

§ Client must tell the service provider what kind of client it is.
– Confidential Clients (i.e., web application)
– Public Clients (i.e., browser or native clients)

§ Client should provide a client redirection URI (or URIs) to the
authorization server. The redirect URI or URIs are used by
the authorization code and implicit grant types.

§ Client must provide the authorization server with other needed info
such as description, website, logo, etc.

38

COPYRIGHT ©2017 MANICODE SECURITY

What Authorization Server Create and Provide
at Registration Time

When clients successfully register with an authorization server,
the following happens:
§ The authorization server provides each confidential client a

unique client identifier for future communication.
§ Confidential clients are also given a unique client secret (credentials

like passwords or keys) that is required (along with the client identifier)
for future communications. THIS IS A massive weakness that should
be replaced with mutual TLS if possible.

39

COPYRIGHT ©2017 MANICODE SECURITY

Client Registration Threats
§ During the OAuth 2.0 registration process between a client application

and an authorization server, attackers can take advantage of aspects
of the OAuth 2.0 client application registration process to execute
these attacks.

§ They can use the authorization server as an open redirector or redirect
the user to a malicious page based on weak client registration.

§ They can steal data from the network that OAuth communication
happens on due to weak or missing encryption in transit.

§ They can use a malicious client application to steal data from the
authorization server based on weak client registration.

§ They can set up a fraudulent authorization server meant to steal
credentials or hijack access from a genuine service.

40

COPYRIGHT ©2017 MANICODE SECURITY

Client Registration Controls
The following defenses are critical when considering security issues that
can arise due to poorly built client registration security.

1. Guarantee network communication confidentiality and integrity;
authorization server and resource server authenticity.

2. Ensure only genuine confidential clients can register with the
authorization server.

3. Ensure proper management of public clients.
4. Ensure authorization server protection from malicious or open

redirection via weak registration.

41

COPYRIGHT ©2017 MANICODE SECURITY

Grant Types

42

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Grant Types

43

You can hide long lived tokens token from the user (authorization
code grant)

You can only activate a short-lived token in the browser
when the user is currently logged on (implicit grant)

You can grant and expose a long-lived tokens directly to the user
via a trusted client (password grant) but never do this in a browser!

You can grant and expose a long-lived token directly to other
services that need to access data not associated with a specific
user (client credentials grant)

COPYRIGHT ©2017 MANICODE SECURITY

Authorization Server Security
§ TLS for everything (Authenticity, Confidentiality, Integrity)
§ Authorization servers should not automatically process repeat

authorizations to public clients unless the client is validated using a
pre-registered redirect URI (Section 5.2.3.5).

§ Authorization servers can mitigate the risks associated with automatic
processing by limiting the scope of access tokens obtained through
automated approvals (Section 5.1.5.1).

§ Explain the scope (resources and the permissions) the user is about to
grant in an understandable way (Section 5.2.4.2).

§ Narrow the scope as much as possible (Section 5.1.5.1).
§ Don't redirect to a redirect URI if the client identifier or redirect URI

can't be verified (Section 5.2.3.5).

https://tools.ietf.org/html/rfc6819

44

COPYRIGHT ©2017 MANICODE SECURITY

Authorization Code Grant

45

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

The whole purpose of the authorization code grant type
is to provide a client application (web application or
native client) access to users' protected resources
from another service.

In short, the user delegates (usually limited) access
to a client application.

46

COPYRIGHT ©2017 MANICODE SECURITY

3-Legged OAuth
Authorization Code Grant is often referred to as "three-legged OAuth 2.0”
§ The first round trip redirects the user from the client application to the

authorization server, where the user logs into the authorization server
and is redirected back to the client application with a proper authorization
code. The user credentials used in this step by the user are never exposed
to the client application.

§ The second round trip from the client application to the authorization server
contains the authorization code. This code is used to gain access to an access
or refresh token. No active refresh or access tokens are exposed to the user.

§ The third round trip uses an active access token to request protected resources.

The user is never exposed or has access to the access token!

47

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

48

The User (Resource Owner) never has access to actual access token

The User (Resource Owner) never has access to actual access token

The Client application can use the access token even when the resource
owner is not present

Authorization Code Refresh Tokens are often long lived or permanent until
the User (Resource Owner) revokes this access through the Client UI.

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

49

http://tools.ietf.org/html/rfc6749

User
Agent

Client

Client Identifier & Redirection URI

Resource
Owner

Authorization
Server

A

User AuthenticatesB

Authorization CodeC

A C

B

Authorization Code & Redirection URID

Access Token (with Optional Refresh Token)E

COPYRIGHT ©2017 MANICODE SECURITY

Authorization Code Variables
The client starts the "authorization code" workflow by redirecting the
user to the authorization server with the right request data. This initial
client request includes:
response_type : this is required by "authorization code" grant type and
should contain the value "code"
client_id: this is the client identifier assigned to the client at client
registration time. This is unique for every client for authorization code
grants.
scope: level of access requested, domain specific
redirection URI: Where the authorization server redirects the user after
access is granted or denied

50

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant:
General Risks
§ Threat agent can read authorization codes, tokens, client secrets, and other

sensitive data via network sniffing, referrer header leakage, browser history,
server logs, or unvalidated redirects.

§ Threat agent can cause denial of service against service provider or client
application that is a web application or web service.

51

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant:
Authorization/Resource Server Risks
§ Threat agent can read an authorization code, access token, client ID, or other

client secret directly from the authorization server database due to SQL
Injection, weak access control, or poor database security.

§ Threat agent can take advantage of authorization server redirects to conduct
open or malicious redirects.

§ Threat agent can guess or brute force authorization codes, tokens, client ids or
other client secrets.

§ Malicious client applications can exploit existing trust to gain malicious access
to protected resources.

§ Authorization server provides a scope that is much more permissive than
needed, leading to a variety of access control weaknesses.

§ Attacker can change scope of an existing active token for data theft.
§ Malicious or counterfeit authorization server can steal credentials.
§ CSRF attack against authorization code can force service provider to authorize

a user to access the threat agent's resources. From there the user may upload
data into the threat agent's account.

52

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant:
Client Application Risks
§ Threat agent steals client ID, client secrets, access tokens, or refresh token

directly from a client application. This is especially high impact when the token
is a bearer token and is not tied to the client application with stronger
authentication.

§ Threat agent can take advantage of client application redirects to conduct open
or malicious redirects.

§ Threat agent can use a malicious client application to phish for user
credentials.

53

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant Server Controls
General Controls
– TLS Everywhere
– Ensure all standard webserver and standard web security controls

are implemented for all servers.
– Educate your users about the risk of phishing.

Resource Server Controls
– Ensure only active access tokens with proper scope are granted access

to protected resources
– Consider limiting the number of uses (or one-time usage) for access tokens.

Client Application Controls
– Consider strong client authentication between the client application

and the service provider.
– When receiving a URL redirected from the the authorization server with sensitive

data, reload the user to a client URL that lets the client application consume the
sensitive data (like an authorization code) but remove it from the user-agent.

– Ensure that all tokens are stored in a secure fashion.

54

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant Server Controls
During Client Registration
– Issue client secrets and client IDs only to clients with proper security policy.
– Ensure that all clients applications are given a unique and strong client ID/client secret

pair after successful registration.
– Ensure all client applications are forced to register a full redirect URI with the

authorization server.

Requesting an Authorization Code
– Verify that the pairing of client ID and client secret is valid.
– If the user is already authenticated at the service provider when being challenged to

provide delegated access, force reauthentication.
– Explain scope to users as much as possible before they authorize access.
– Store authorization codes as you would other credentials in the authorization server.
– Only redirect to a URI that is registered with the authorization server.

55

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant Server Controls
Requesting Access Token or Refresh Token
– Verify authorization codes like other credentials (see credential storage module) in the

authorization server.
– Limit the scope of all provided access tokens as much as possible.
– Force reauthorization when scope or other aspects of token changes.
– Ensure the validity of access tokens is short (the length of your client application

session or less).
– Ensure that client secrets and all tokens for a specific user can be revoked by that

user.
– Consider limiting authorization codes to only one use.
– Use the "state" parameter to avoid CSRF.

Detecting Malicious Activity
– Ensure that client ID, client secrets, and all active tokens for that client that can be

easily revoked by the authorization server.

56

COPYRIGHT ©2017 MANICODE SECURITY

CSRF attacks against OAuth

57

COPYRIGHT ©2017 MANICODE SECURITY

CSRF Attacks against Oauth: Part 1
1. Attacker assumes that Victim is currently logged in at Client Site
– https://consumer-site.example/ (The OAuth Client Application)

2. Attacker goes through registration/login workflow at Client Site
– https://consumer-site.example/login and uses that account to trigger a Oauth

workflow with the Provider Service (The OAuth authorization/resource server)

1) Client Site redirects attacker to Provider Site login interface.
– This is called the Authorization Request. https://provider-site.example/login

2) Attacker successfully logs in with Provider Site
3) Provider Site responds with redirect URL

which contains the authorization code
in the code parameter.

– This is called the Authorization Grant
http://consumer-site.example/auth?code=1a2s3d4f5g6h

58

COPYRIGHT ©2017 MANICODE SECURITY

CSRF Attacks against Oauth: Part 2

3. Instead of visiting or redirecting to the Authorization Grant redirect
URL, Attacker copies the URL and places a reference to it in an
image tag on a web page

– ()
(https://evil-page.example/)

4. Attacker gets Victim to visit https://evil-page.example/.
This in turn gets Victim to request the Authorization Grant URL
http://consumer-site.example/auth?code=1a2s34f5g6h

5. By visiting the Authorization Grant URL, the Victim's Consumer Site
account is now attached via OAuth to the attackers Service account.
Any action that effects the service account by the Victim is
accessible to the Attacker.

59

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2 and avoiding CSRF

60

1 Consumer generates unique random state value, and stores it in server side
session variable. JSON Web Tokens are good for state values.

2 Consumer sends "state" parameter with Authorization Request

3 On successful authorization, Provider Site includes "state" parameter in
Authorization Grant redirect URI

4 When Victim visits redirect URI, the "state" parameter is compared against the
"state" parameter stored in server side session variable.

Use the "state" parameter, it is essentially a CSRF token!

COPYRIGHT ©2017 MANICODE SECURITY

What is an OAuth Code
Flow Open Redirector
Attack? How is it
stopped?

61

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2 Authorization Code Flow
Open Redirector: Attack

1. Victim goes through login workflow at Consumer Site
(https://consumer-site.example/login) using Provider Site for
authorization.

2. Attacker constructs an Authorization Request URL for Provider Site
1. redirect_uri is set to https://evil-site.example/

3. Attacker either embeds evil URL in an image tag or constructs a
clickable link at Consumer Site.

4. When the evil URL is loaded, the provider will 302 redirect back to
redirect_uri since user was already logged in.

5. When the redirect occurs, the evil site can read the HTTP Referrer to
get the Authorization Code.

6. Using this Authorization Code, Attacker can login as user

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2 Authorization Code Flow
Open Redirector: Remediation

Use a server side redirect_uri that enforces
strict policy

At the very least, server side whitelist should
enforce what the redirect_url must start with
for added flexibility.

COPYRIGHT ©2017 MANICODE SECURITY

What Happens if an
Access Token
is Stolen?

64

COPYRIGHT ©2017 MANICODE SECURITY

"One Token to Rule Them All"

OAuth 2 Implicit Flow
Access Token Reuse: Attack

1. Victim authorizes with Evil Consumer Site for Provider Site
using access_token

2. Acme Widgets Consumer Site uses Implicit Flow for authentication.
3. Attacker authenticates as Victim with the Evil Consumer Site

access_token using https://acme-
widgets.example/callback#access_token=access_token

COPYRIGHT ©2017 MANICODE SECURITY

Conclusion

66

COPYRIGHT ©2017 MANICODE SECURITY

OAuth 2.0 Summary
§ It takes massive efforts to build secure OAuth 2 solutions
§ The core standard barely addresses security
§ Major providers with PHDs to spare are overall doing

a reasonable job of build secure solutions
§ Clients are at risk because they are likely to build less security

implementations than providers
§ Buckle up, read the threat model several times and follow it's many

many many recommendations

67

COPYRIGHT ©2017 MANICODE SECURITY

Authentication: Where we’ve been

68

OAuth Terms

Client Registration

OAuth Grant Types

OAuth Threat Model

OAuth Countermeasures and Controls

JIM MANICO Secure Coding Instructor www.manicode.com

It’s been a pleasure.
jim@manicode.com

